Answer:
Option A
Explanation:
Let the number be = x
The no. is increased by 10% then the new no. $= x + \left(\frac{x}{10}\right)$ $= \left(\frac{11x}{10} \right)$
Now, the no. is decrease by 10%,
then the new no. $= \left(\frac{11x}{10} \right) - \left(\frac{11x}{100}\right)$ $= \frac{( 99x )}{ 100}$.
$\therefore$ Decrease in new no. $= x - \left(\frac{99x}{100} \right)$ $= \left(\frac{x}{100} \right)$
$\therefore$ % Decrease $= \left(\frac{x}{( 100 \times x )}\right) \times 100$ $= 1$%