Answer:
Option E
Explanation:
II. $A$’s $1$ hour work $=\frac{1}{16}$.
Suppose $B$ fills the tank in $x$ hours. Then, $B$’s $1$ hour work $=\frac{1}{x}$.
I. Work done by $A$ in $1$ hour $=150\%$ of $\frac{1}{x}$ $=\left(\frac{1}{x}\times\frac{150}{100}\right)$ $=\frac{3}{2x}$.
$\therefore\frac{3}{2x}=\frac{1}{16}$
$\Leftrightarrow x=24$.
So, $B$ can fill the tank in 24 hours.
$(A+B)$’s $1$ hour work $=\left(\frac{1}{16}+\frac{1}{24}\right)$ $=\frac{5}{48}$.
$\therefore $ $(A+B)$ can fill the tank in $\frac{48}{5}$ hrs.
Thus I & II give the answer.
III. Work done by $B$ in $1$ hour $=\frac{1}{24}$.
From II & III, we get the same answer.
From III & I, we get :
$A$’s $1$ hour work $=150\%$ of $\frac{1}{24}$ $=\left(\frac{1}{24}\times\frac{150}{100}\right)$ $=\frac{1}{16}$.
Thus, III & I, we get the answer.
$\therefore$ Correct answer is (E).