1)

The domain of the function f(x) = $\sqrt{\frac{1}{|x-2|-(x-2)}}$ is:


A) $(-\infty,2)$

B) $(2,\infty)$

C) $(-\infty,2)$

D) $(2,\infty)$

Answer:

Option C

Explanation:

|x-2| = $\begin{cases}x-2 & x \geq 2\\2-x & x < 2\end{cases}$

|x-2|-(x-2) = $\begin{cases}0 & x \geq 2\\4-2x & x < 2\end{cases}$

given expression is defined for (-∞ ,2)