1)

The number of distinct real roots of $x^{4}-4x^{3}+12x^{2}+x-1=0$


A) 4

B) 3

C) 2

D) 1

Answer:

Option C

Explanation:

$f(x)=x^{4}-4x^{3}+12x^{2}+x-1$

 $f'(x)= 4x^{3}-12x^{2}+24x+1$

 $f''(x)=12x^{2}-24x+24$

 =$12(x^{2}-2x+2)$

=$12(x-1)^{2}+1)>0$, for all x

 $\Rightarrow$ f'(x) is increasing

 Since , f'(x)  is cubic and increasing

 $\Rightarrow$  f'(x) has only one real  root and two imaginary roots

 $\therefore$   f(x) cannot have all distinct root

 $\Rightarrow$  Atmost 2 real roots

 Now,  f(-1)=15

 f(0)=-1 and f(1)=9

 $\therefore$ f(x)   must have one root in (-1,0) and other in (0,1)

 $\Rightarrow$  2 real roots