1)

Four fair dice $D_{1},D_{2},D_{3}$ and $D_{4}$ each having  six faces numbered 1, 2,3, 4, 5 and 6 are rolled simultaneously. The  probability that $D_{4}$  shows a number

appearing on one of  $D_{1},D_{2}$ and $,D_{3}$ is 


A) $\frac{91}{216}$

B) $\frac{108}{216}$

C) $\frac{125}{216}$

D) $\frac{127}{216}$

Answer:

Option A

Explanation:

 Concept  involved  As one of the dices shows a number appearing on one of $P_{1},P_{2} $ and $P_{3}$ 

Thus, three cases arise

 (i) All shows the same number

 (ii)  Number appearing on $D_{4}$ appears on any one of $D_{1},D_{2}, D_{3}$

 (iii) Number appearing on $D_{4}$  appears on any two  of $D_{1},D_{2},D_{3}$

 sol .Sample  space= $ 6 \times 6 \times 6 \times 6$

  =$6^{4}$  favourable events.

 = case I or case II  or case III

 Case I.  First, we should select one number for $D_{4}$ which appears on all i.e.,

 $^{6} C_{1} \times 1.$

Case II. for $D_{4}$ there are $^{6}C_{1}$ ways .Now, it appears on any one of $D_{1},D_{2},D_{3}$ 

i.e, $^{3}C_{1} \times 1$ for other two there are 5 x 5 ways

 $\Rightarrow$ $^{6}C_{1} \times ^{3}C_{1} \times 1 \times 5 \times 5$

 Case III

 For $D_{4}$ there are $^{6}C_{1}$  ways  now it appears on any two of $D_{1},D_{2},D_{3} \Rightarrow  ^{3}C_{2} \times 1^{2}$

 for other one there are 5 ways

$\Rightarrow$  $^{6}C_{1} \times ^{3}C_{2} \times 1^{2} \times 5 $

 Thus probability

 $=\frac{^{6}C_{1}+^{6}C_{1} \times^{3}C_{1}\times 5^{2}+^{6}C_{1}\times ^{3}C_{2}\times 5}{6^{4}}$

 $=\frac{6(1+75+15)}{6^{4}}=\frac{91}{216}$