1)

 The locus of the foot of perpendicular drawn from the centre of the ellipse    $x^{2}+3y^{2}=6 $ on any tangent to it is


A) $(x^{2}-y^{2})^{2}=6x^{2}+2y^{2}$

B) $(x^{2}-y^{2})^{2}=6x^{2}-2y^{2}$

C) $(x^{2}+y^{2})^{2}=6x^{2}+2y^{2}$

D) $(x^{2}+y^{2})^{2}=6x^{2}-2y^{2}$

Answer:

Option D

Explanation:

Equation of ellipse is   $x^{2}+3y^{2}=6 $   or $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$

  Equation of the tangent is 

$\frac{x\cos\theta}{a}+\frac{y\sin\theta}{b}=1$

Let (h,k) be any point on the locus.

$\therefore$     $\frac{h}{a}\cos\theta+\frac{k}{b}\sin\theta=1$      .....(i)

 Slope  of the tangent   $\frac{-b}{a}\cot\theta$

  Slope of perpendicular drawn from centre (0,0) to (h,k) is k/h

Since, both the lines are perpendicular

$\therefore$    $\left(\frac{k}{h}\right)\times(\frac{-b}{a}\cot\theta)=-1$

    $\Rightarrow$      $\frac{\cos\theta}{ha}=\frac{\sin\theta}{kb}=\alpha$          [say]

$\Rightarrow$     $\cos\theta=\alpha ha$

                      $\sin \theta=\alpha kb$

 

From Eq(i) , we get

     $\frac{h}{\alpha}(\alpha ha+\frac{k}{b}(\alpha kb)=1$

 $\Rightarrow$      $h^{2}\alpha+k^{2}\alpha=1$

$\Rightarrow$             $\alpha=\frac{1}{h^{2}+k^{2}}$

Also,           $\sin^{2}\theta+\cos^{2}\theta=1$

    $\Rightarrow$           $(\alpha kb)^{2}+(\alpha ha)^{2}=1$

$\Rightarrow$        $\alpha^{2}k^{2}h^{2}+\alpha^{2}h^{2}a^{2}=1$

  $\Rightarrow$                              $\frac{k^{2}b^{2}}{(h^{2}+k^{2})^{2}}+\frac{h^{2}a^{2}}{(h^{2}+k^{2})^{2}}=1$

    $\Rightarrow$                        $\frac{2k^{2}}{(h^{2}+k^{2})^{2}}+\frac{6h^{2}}{(h^{2}+k^{2})^{2}}=1$

                                                                                                   [$\therefore$  a2=6, b2=2]

$\Rightarrow$        $6x^{2}+2y^{2}=(x^{2}+y^{2})^{2}$

                                      [Replaceing k by y and h by x]