1)

 The normal to the curve  $x^{2}+2xy-3y^{2}=0 $    at (1,1)


A) does not meet the curve again

B) meets the curve again in the second quadrant

C) meets the curve again in the third quadrant

D) meets the curve again in the fourth quadrant

Answer:

Option D

Explanation:

Given the equation of curve is   $x^{2}+2xy-3y^{2}=0 $       .......(i)

 On differentiating w.r.t x, we get

    $2x+2xy'+2y-6yy'=0$

   $\Rightarrow$                                  $y'=\frac{x+y}{3y-x}$       

 At x=1, y=1, $y'=1$

  i.e,          $\left(\frac{\text{d}y}{\text{d}x}\right)_{(1,1)}=1$

   Equation of normal at (1,1)

    $y-1=-\frac{1}{1}(x-1)$

  $\Rightarrow$      y-1=-(x-1)

$\Rightarrow$      x+y=2     ......(ii)

On solving Eqs .(i) and (ii) simultaneously , we get

          $x^{2}+2x(2-x)-3(2-x)^{2}=0$

$\Rightarrow$            $x^{2}+4x-2x^{2}-3(4+x^{2}-4x)=0$

$\Rightarrow$            $-x^{2}+4x-12-3x^{2}+12x=0$

$\Rightarrow$          $-4x^{2}+16x-12=0$

$\Rightarrow$        $4x^{2}-16x+12=0$

$\Rightarrow$      $x^{2}-4x+3=0$

$\Rightarrow$          (x-1) (x-3)

$\Rightarrow$    x=1,3

 Now, whern x=1 , then y=1

   and when x=3, then y=-1

      P =(1,1)    and Q =(3,-1)

 Hence, normal  meets the curve again at (3,-1) in fourth quadrant.

Alter:

Given,      $x^{2}+2xy-3y^{2}=0 $ 

$\Rightarrow$        (x-y)(x+3y)=0

$\Rightarrow$     x-y=0  or x+3y=0

 Equation of normal  at (1,1) is

                y-1=-1(x-1)

$\Rightarrow$      x+y-2=0

  It intersects  x+3y=0 at   (3,-1)

and hence normal meet the curve in fourth quadrant.

332021765_M49.JPG