1)

The relation between $[\epsilon_{0}]$ and $[\mu_{0}]$


A) $[\mu_{0}]= [\epsilon_{0}][L]^{2}[T]^{-2}$

B) $[\mu_{0}]= [\epsilon_{0}][L]^{-2}[T]^{2}$

C) $[\mu_{0}]= [\epsilon_{0}^{}]^{-1}[L]^{2}[T]^{-2}$

D) $[\mu_{0}]= [\epsilon_{0}^{}]^{-1}[L]^{-2}[T]^{2}$

Answer:

Option D

Explanation:

 

 $c= \frac{1}{\sqrt{\mu_{0}\epsilon_{0}}}$

       $c^{2}= \frac{1}{{\mu_{0}\epsilon_{0}}}$

    $\mu_{0}=\epsilon_{0}^{-1} c^{-2}$

$[\mu_{0}]= [\epsilon_{0}^{}]^{-1}[L]^{-2}[T]^{2}$