1) The relation between $[\epsilon_{0}]$ and $[\mu_{0}]$ A) $[\mu_{0}]= [\epsilon_{0}][L]^{2}[T]^{-2}$ B) $[\mu_{0}]= [\epsilon_{0}][L]^{-2}[T]^{2}$ C) $[\mu_{0}]= [\epsilon_{0}^{}]^{-1}[L]^{2}[T]^{-2}$ D) $[\mu_{0}]= [\epsilon_{0}^{}]^{-1}[L]^{-2}[T]^{2}$ Answer: Option DExplanation: $c= \frac{1}{\sqrt{\mu_{0}\epsilon_{0}}}$ $c^{2}= \frac{1}{{\mu_{0}\epsilon_{0}}}$ $\mu_{0}=\epsilon_{0}^{-1} c^{-2}$ $[\mu_{0}]= [\epsilon_{0}^{}]^{-1}[L]^{-2}[T]^{2}$