1)

If $a=\hat{i}+\hat{j}-2\hat{k},b=2\hat{i}-\hat{j}+\hat{k}$   and    $c=3\hat{i}-\hat{k}$ and  c=ma+nb , then m+n is equal to


A) 0

B) 1

C) 2

D) -1

Answer:

Option C

Explanation:

Given , $a=\hat{i}+\hat{j}-2\hat{k},b=2\hat{i}-\hat{j}+\hat{k}$   and    $c=3\hat{i}-\hat{k}$ and  c=ma+nb 

$\therefore$     $3\hat{i}-\hat{k}=m(\hat{i}+\hat{j}-2\hat{k})+n(2\hat{i}-\hat{j}+\hat{k})$

 $\Rightarrow$     $3\hat{i}-\hat{k}=(m+2n)\hat{i}+(m-n)\hat{j}+(-2m+n)\hat{k}$

On equating the coefficient  of $\hat{i}$, $\hat{j}$ and $\hat{k}$ , respectively

we get

    3=m+2n,0=m-n

and -1=-2m+n

 $\Rightarrow$    3=n+2n

$\Rightarrow$    n=1

$\Rightarrow$    m=1  and n=1

$\Rightarrow$     m+n=1+1=2