1)

if g(x)  is the inverse function of f(x) and  $f'(x) =\frac{1}{1+x^{4}}$  , then g'(x) is 


A) $1+[g(x)]^{4}$

B) $1-[g(x)]^{4}$

C) $1+[f(x)]^{4}$

D) $\frac{1}{1+[g(x)]^{4}}$

Answer:

Option A

Explanation:

Given, g(x)=f'(x)

f(g(x))=x

On differentiating both sides w.r.t 'x' , we get

 f'(g(x)).g'(x)=1

$\therefore$    $\frac{1}{1+(g(x))^{4}}g'(x)=1$

      $[\because f'(x)=\frac{1}{1+x^{4}}(given)]$

$\Rightarrow g'(x) =1+[g(x)]^{4}$