1)

If a,b,c,d are 4 vectors such that a.b=0, 

$|a\times c|=|a||c|,|a\times d|=|a||d|, $   then [bcd]=


A) |a||b||c|

B) |b||c||d|

C) $\frac{1}{6}$

D) 0

Answer:

Option D

Explanation:

We have , four vectors a,b,c and d such that a.b=0

  $|a\times c|=|a||c|,|a\times d|=|a||d|$

From the given condition , we get

 $a\perp c$   and $a\perp d$

   [$\because$ $|x \times y|=|x||y| \sin theta $  and $\sin \theta =1 \Rightarrow  \theta =\frac{\pi}{2}$]

$\Rightarrow$     $\underline{a}||(\underline{c}\times\underline{d})$

$\Rightarrow$   $c \times d =\lambda  a$ , where $\lambda$ is a constant.

 Now, consider $ [b c d]=b.(c \times d)$

  $=b.(\lambda a) =\lambda (b.a)=\lambda (a.b)$

 $= \lambda \times 0=0$      [$\because$ a.b=0]

(c)    a,b, c are non -coplannar

$\therefore$   $b \times c, c \times a $ and $a \times b$ are also non-coplanar 

So, any vector can be expressed as a linear combination  of these vectors.

Let , $ d= \lambda (b \times c)+\mu (c \times a)+m(a \times b)$

               $a.b=\lambda [a b c]$

             $ b.d =\mu ( b c a )$

              $c.d=m(c a b)$

 $\therefore$      $d=\frac{(a.d)(b\times c)}{[a b c]}+\frac{(b.d)(c \times a)}{[a b c]}+\frac{(c.d)(a\times b)}{[a b c]}$

$\Rightarrow (a.d)(b\times c)+(b.d)(c\times a)+(c-d)(a\times b)=d[a b c]$

$\Rightarrow |(a.d)(b\times c)+(b.d)(c\times a)+(c.d)(a\times b)|=[a b c]$      [$\because$ |d|=1]