Answer:
Option A
Explanation:
Given,
$P(E_{1}\cup E_{2})=\frac{5}{8},P(\overline{E_{1}})=\frac{3}{4}, P(E_{2})=\frac{1}{2} $
$P(E_{1}\cap {E}_{2})=P(E_{1})+P(E_{2})-P(E_{1}\cup E_{2})$
$P(E_{1}\cap {E}_{2})=\frac{1}{4}+\frac{1}{2}-\frac{5}{8}$
$P(E_{1}\cap {E}_{2})=\frac{1}{8}$
$P(E_{1}\cap {E}_{2})=P(E_{1})\times P(E_{2})=\frac{1}{4}\times \frac{1}{2}=\frac{1}{8}$
$\therefore$ $E_{1} and E_{2}$ are independent events