1)

The tangent lines to the curve $y^{2}=4ax$ at points

where x= a, are


A) parallel

B) perpendicular

C) inclined at 60°

D) inclined at 30°

Answer:

Option B

Explanation:

The given equation of the curve is $y^{2}=4ax$           ...(1)

Differentiating both sides of (1) with respect to x, we get

$2y\frac{dy}{dx}=4a;\Rightarrow \frac{dy}{dx}=\frac{4a}{2y}=
\frac{2a}{y}$                    ...(2)

If ψ be the angle which the tangent to the curve at (x,y) makes with the positive direction of x-axis then   $\tan\psi=\frac{\text{d}y}{\text{d}x}$ or

 $\tan\psi= \frac{2a}{y}$         ...(3),     [using (2)]

At $x=a$, then from (1), 

$y^{2}=4a$.$ a=4a^{2}\Rightarrow y=±2a$

Hence, we get two points (a, 2a) and (a, -2a) on the curve

At $(a, 2a)$, $x =a$, $y=2a$ and let $\psi=\psi_{1}$. 

∴ from (3), $\tan\psi_{1}=\frac{2a}{2a}=1=\tan45°$  

                                  $\Rightarrow\psi_{1}=45°$

At (a,2a)x=ay=2 and let  $\psi=\psi_{2}$.

∴ from (3), $\tan\psi_{2}=\frac{2a}{-2a}=-1=\tan135°$  

                                   or    $\psi_{2}=135°$

Hence the required angle between tangents to (1) at $(a,2a)$ and   $(a,-2a)= \psi_{2}-\psi_{1}= 135°- 45°=90°$

This shows that the tangent lines to (1) at $(a,2a)$ and $(a,-2a)$ are perpendicular to each other.