Answer:
Option C
Explanation:
Let rate upstream $=x$ kmph and rate downstream $=y$ kmph.
Then, $\frac{24}{x}+\frac{36}{y}$ $=6$ ....(i)
and $\frac{36}{x}+\frac{24}{y}$ $=\frac{13}{2}$ ...(ii)
Adding (i) and (ii), we get : $60\left(\frac{1}{x}+\frac{1}{y}\right)$ $=\frac{25}{2}$
or $\frac{1}{x}+\frac{1}{y}$ $=\frac{5}{24}$ ....iii)
Subtracting (i) from (ii), we get : $12\left(\frac{1}{x}-\frac{1}{y}\right)$ $=\frac{1}{2}$
or $\frac{1}{x}-\frac{1}{y}$ $=\frac{1}{24}$ .....iv)
Adding (iii) and (iv), we get : $\frac{2}{x}$ $=\frac{6}{24}$ or $x=8$
So $\frac{1}{8}+\frac{1}{y}$ $=\frac{5}{24}$
$\frac{1}{y}$ $=\frac{5}{24}-\frac{1}{8}$ $=\frac{1}{12}$ $\Leftrightarrow y=12$
Speed upstream = 8 kmph, Speed downstream = 12 kmph.
Hence, rate of current $= \frac{1}{2}(12-8)$ kmph = 2 kmph.