Answer:
Option C
Explanation:
$1$ man = $2$ boys $\Rightarrow$ ($12$ men + $18$ boys) $=(12\times 2+18)$ boys = 42 boys
Let required number of boys $= x$.
$21$ men + $x$ boys $=(21\times 2+x)$ boys $=(42+x)$ boys
Less days, More boys (Indirect Proportion)
More hrs per day, Less boys (Indirect Proportion)
$\left\{\begin{array}{c}Days\quad\quad\quad 50:60\\ Hours/Day\quad 9:\frac{15}{2}\\Work\quad\quad\quad\quad 1:2\end{array}\right\}::42:(42+x)$
$\therefore [50\times 9\times 1\times(42+x)]$ $=\left(60\times \frac{15}{2}\times 2\times 42\right)$
$\Leftrightarrow (42+x)$ $=\frac{37800}{450}$
$\Leftrightarrow 42+x=84$
$\Leftrightarrow x=42$.