A body of mass 64 g is made to oscillate turn by turn on two different springs A and B. spring A and B has a force constant 4$\frac{N}{m}$ and 16 $\frac{N}{m}$ respectively. If T1 and T2 are period of oscillations of spring A and B respectively , Then $\frac{T_{1}+T_{2}}{T_{1}-T_{2}}$ will be

A) 1:2

B) 1:3

C) 3:1

D) 2:1


 The Brewster's angle for the glass-air interface is (54.74) °. If a ray of  light passing from air to glass strikes at an angle of incidence 45°, then the angle of refraction  is

  $[\tan (54.74)^{0}=\sqrt{2},\sin 45=\frac{1}{\sqrt{2}}]$

A) $\sin ^{-1}\left(\sqrt{2}\right)$

B) $\sin ^{-1}\left(1\right)$

C) $\sin ^{-1}\left(0.5\right)$

D) $\sin ^{-1}\left(\frac{0.5}{\sqrt{2}}\right)$


 A uniform wire has length L mass M and density $\rho$  . it is under tension T and v is the speed of transverse wave along  the wire. The area of cross-section  of the wire is 

A) $\frac{T}{v^{2}\rho}$

B) $\frac{v^{2}\rho}{T^{2}}$

C) $T^{2}v^{}\rho$

D) $T^{}v^{2}\rho$


Two bodies  A and B of equal mass are suspended from two separate massless springs of force constant k1 and k2, respectively. The bodies oscillate vertically such that their maximum velocities are equal. The ratio of the amplitudes  of body  A to that of body B is 

A) $\sqrt{\frac{k_{2}}{k_{1}}}$

B) $\frac{k_{2}}{k_{1}}$

C) $\frac{k_{1}}{k_{2}}$

D) $\sqrt{\frac{k_{1}}{k_{2}}}$


 The angle subtended  by the vector   $A=4\hat{i}+3\hat{j}+12\hat{k}$ with the X-axis is 

A) $\cos^{-1}\left(\frac{3}{13}\right)$

B) $\sin^{-1}\left(\frac{3}{13}\right)$

C) $\sin^{-1}\left(\frac{4}{13}\right)$

D) $\cos^{-1}\left(\frac{4}{13}\right)$